

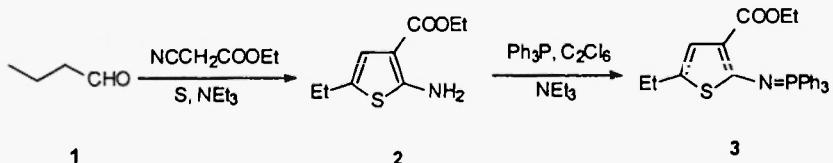
A SELECTIVE SYNTHESIS OF 2-ALKYLAMINO THIENO[2,3-*d*]PYRIMIDIN-4(3*H*)-ONES

Shao-Fa Sun* and Xu-Hong Yang

Department of Chemistry and Life Science, Xianning College, Xianning Hubei 437000, P. R. China

e-mail: sfsun10@126.com

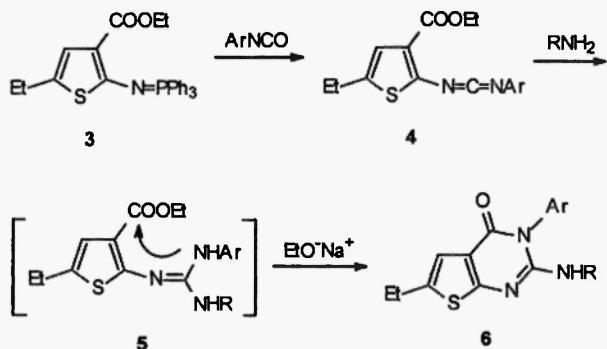
Abstract : 2-Alkylamino-thieno[2,3-*d*]pyrimidin-4(3*H*)-ones **6** were synthesized by a selective synthetic method, which includes aza-Wittig reaction of iminophosphorane **3** with aromatic isocyanate to give carbodiimide **4** and subsequent reaction of **4** with various aliphatic primary amine in the presence of sodium ethoxide.


Introduction

Thienopyrimidines are of great importances because of their remarkable biological properties. For example, some 2-substituted thienopyrimidinones show significant antifungal and antibacterial activities(1,2), whereas others exhibited good anticonvulsant or H₁ receptor antagonistic activities(3,4). There are many known methods for the synthesis of thienopyrimidinones(5-7), however, 2-amino substituted thienopyrimidinones were not easily accessible by currently existing routes.

The aza-Wittig reactions of iminophosphoranes have received increased attention in view of their utility in the synthesis of nitrogen heterocyclic compounds(8-10). Annelation of ring systems with N-heterocycles by means of an aza-Wittig reaction has been widely utilized because of the availability of functionalized iminophosphoranes. Here we wish to report a selective synthesis of 2-alkylamino substituted thieno[2, 3-*d*]pyrimidin-4(3*H*)-ones **6** from easily accessible iminophosphorane **3**.

Results and Discussion


The 2-amino-3-(ethoxycarbonyl)thiophene **2**, easily obtained by Gewald method from butyraldehyde **1**, ethyl cyanoacetate and sulfur(11), was converted to iminophosphorane **3** via reaction with triphenylphosphine, hexachloroethane and triethylamine (Scheme-1).

Scheme-1

Iminophosphorane **3** reacted with aromatic isocyanates to give carbodiimides **4**, which were allowed to react with aliphatic primary amines in the presence of EtO⁺Na⁻ to provide only 2-alkylamino-thieno[2, 3-*d*]pyrimidin-4(3*H*)- ones **6**, one of the possible regioisomers (Scheme 2). We obtained only **6** from the reaction mixture after recrystallization; the other isomer was not found by ¹H NMR analysis of the reaction mixture. The structure of **6** is deduced from its ¹H NMR data. For example, the ¹H NMR spectrum in **6a** (R = *n*-Pr) shows the signals of NH at 4.00 ppm as a broad absorption and NCH₂ at 3.41~3.30 ppm as multiple absorption, which strongly suggest the existence of NHCH₂CH₂CH₃ group in

6a(12). Whenever the primary amine used is small ($R = n\text{-Pr}$) or bulky ($R = t\text{-Bu}$), the cyclization was achieved all in good yields with similar selectivity. The results are listed in Table-1. The solitary formation of **6** can be rationalized in terms of a base catalytic cyclization of the guanidine intermediate **5** to give **6** across the arylamino group rather than the alkylamino one. This may probably be due to the preferential generation of $-\text{N}^+\text{Ar}$ from more acidic $-\text{NHAr}$ under the catalysis of EtO^+Na^+ .

Scheme-2

Table-1 : Preparation of 2-alkylaminothienopyrimidinones **6**

Compound	Ar	R	Condition	Yield* (%)
6a	Ph	<i>n</i> -C ₃ H ₇	r.t./6 hr	87
6b	Ph	<i>n</i> -C ₄ H ₉	r.t./6 hr	74
6c	Ph	<i>n</i> -C ₅ H ₁₁	r.t./6 hr	69
6d	Ph	PhCH ₂	r.t./6 hr	88
6e	Ph	<i>i</i> -C ₃ H ₇	r.t./7 hr	85
6f	Ph	cyclohexyl	r.t./8 hr	79
6g	Ph	<i>t</i> -C ₄ H ₉	r.t./8 hr	84
6h	Ph	Ph	r.t./6 hr	78
6i	4-Cl-C ₆ H ₄	<i>n</i> -C ₃ H ₇	r.t./7 hr	81
6j	4-Cl-C ₆ H ₄	<i>n</i> -C ₄ H ₉	r.t./6 hr	85

*Isolated yields based on iminophosphorane **3**.

In summary, the above synthetic method provides a selective synthesis of 2-alkylamino- thiено[2,3-*d*]pyrimidin-4(3*H*)-ones. Due to the easily accessible and versatile starting material, this method has the potential in synthesis of many biologically and pharmaceutically active thienopyrimidinones derivatives.

Experimental

Melting points were uncorrected. MS were measured on Finnigan Trace MS spectrometer. IR were recorded on a PE-983 infrared spectrometer as KBr pellets with absorption in cm^{-1} . NMR were recorded in CDCl_3 on a Varian Mercury 400 spectrometer and resonances are given in ppm (δ) relative to TMS. Elementary analyses were taken on a Vario EL III elementary analysis instrument.

Preparation of 3-ethoxycarbonyl-5-ethyl-2-(triphenylphosphoranylidene)amino-thieno[2,3-*d*]pyrimidin-4(3*H*)-one **3**
 To a mixture of 2-amino-3-ethoxycarbonyl-thieno[2,3-*d*]pyrimidin-4(3*H*)-one(**11**) **2** (1.59 g, 8 mmol), PPh_3 (3.14 g, 12 mmol) and C_2Cl_6 (2.84 g, 12 mmol) in dry CH_3CN (40 mL), was added dropwise NEt_3 (2.42 g, 24 mmol) at 0-5 °C. The

colour of the reaction mixture quickly turned yellow. After stirred for 4 h, the solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give iminophosphorane **3** (3.08 g, 84% yield). White crystals; mp 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.46 (m, 15H, Ph-H), 6.78 (s, 1H, thiophene-4-H), 4.28 (q, *J*=7.2 Hz, 2H, OCH₂), 2.47 (q, *J*=7.2 Hz, 2H, CH₂), 1.35 (t, *J*=7.2 Hz, 3H, CH₃), 1.11 (t, *J*=7.2 Hz, 3H, CH₃); IR (cm⁻¹, KBr), 1695 (C=O), 1492, 1200, 1149, 696; MS (m/z, %), 459 (M⁺, 30), 444 (23), 277 (100), 183 (91), 77 (42); Anal. Calcd. for C₂₇H₂₆NO₂PS: C, 70.57; H, 5.70; N, 3.05. Found: C, 70.41; H, 5.57; N, 3.25.

General Preparation of 2-alkylamino-thieno[2,3-*d*]pyrimidin-4(3*H*)-ones **6**—To a solution of iminophosphorane **3** (1.38 g, 3 mmol) in dry methylene chloride (15 mL) was added aromatic isocyanate (3 mmol) under nitrogen at 0-5 °C. After the reaction mixture was stood for 12 hours at 0-5 °C, the solvent was removed off under reduced pressure and ether/petroleum ether (1:2, 30 mL) was added to precipitate triphenylphosphine oxide, which was filtered, the solvent was removed to give carbodiimide **4**, **4** can be used directly without further purification. To the solution of **4** in methylene chloride (15 mL) was added alkylamine (3 mmol). After the reaction mixture was stood for 10-30 minutes, the solvent was removed and anhydrous ethanol (10 mL) with several drops of EtONa in EtOH was added (pH=10). The mixture was stirred for 6-8 hr at room temperature. The solution was condensed and the residual was recrystallized from ethanol to give 2-alkylamino-thieno[2, 3-*d*]pyrimidin-4(3*H*)-ones **6a~6i** separately.

6a: white crystals, m. p. 90-91 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.61-7.25 (m, 5H, Ar-H), 6.98 (s, 1H, thiophene-4-H), 4.00 (s, 1H, NH), 3.41-3.30 (m, 2H, NCH₂), 2.80 (q, *J*=7.2 Hz, 2H, CH₂), 1.50-0.83 (m, 8H, CH₃ and CH₂CH₃); IR (cm⁻¹, KBr), 3432 (NH), 1682 (C=O), 1535, 1265; MS (m/z, %), 313 (M⁺, 100), 299 (35), 285 (27), 255 (78), 153 (86); Anal. Calcd. for C₁₇H₁₉N₃OS: C, 65.15; H, 6.11; N, 13.41. Found: C, 65.39; H, 6.05; N, 13.54.

6b: white crystals, m. p. 132-133 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.60-7.26 (m, 5H, Ar-H), 6.96 (s, 1H, thiophene-4-H), 4.00 (s, 1H, NH), 3.40-3.30 (m, 2H, NCH₂), 2.79 (q, *J*=7.2 Hz, 2H, CH₂), 1.46-0.86 (m, 10H, CH₃ and CH₂CH₂CH₃); IR (cm⁻¹, KBr), 3425 (NH), 1680 (C=O), 1535, 1278; MS (m/z, %), 327 (M⁺, 34), 313 (100), 299 (18), 256 (89), 153 (58); Anal. Calcd. for C₁₈H₂₁N₃OS: C, 66.03; H, 6.46; N, 12.83. Found: C, 66.08; H, 6.52; N, 12.61.

6c: white crystals, m. p. 133-134 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.60-7.25 (m, 5H, Ar-H), 6.94 (s, 1H, thiophene-4-H), 4.03 (s, 1H, NH), 3.40-3.30 (m, 2H, NCH₂), 2.78 (q, *J*=7.2 Hz, 2H, CH₂), 1.48-0.81 (m, 12H, CH₃ and (CH₂)₃CH₃); IR (cm⁻¹, KBr), 3430 (NH), 1684 (C=O), 1534, 1274; MS (m/z, %), 341 (M⁺, 42), 313 (31), 285 (65), 257 (57), 153 (84), 77 (100); Anal. Calcd. for C₁₉H₂₃N₃OS: C, 66.83; H, 6.79; N, 12.31. Found: C, 66.68; H, 6.63; N, 12.35.

6d: white crystals, m. p. 245-247 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.60-7.18 (m, 10H, Ar-H), 6.94 (s, 1H, thiophene-4-H), 4.56 (d, *J*=5.4 Hz, 2H, NCH₂), 4.50 (s, 1H, NH), 2.80 (q, *J*=7.2 Hz, 2H, CH₂), 1.32 (t, *J*=7.2 Hz, 3H, CH₃); IR (cm⁻¹, KBr), 3385 (NH), 1678 (C=O), 1538, 1070; MS (m/z, %), 361 (M⁺, 58), 347 (27), 333 (51), 257 (78), 153 (81), 91 (100); Anal. Calcd. for C₂₁H₁₉N₃OS: C, 69.78; H, 5.30; N, 11.62. Found: C, 69.71; H, 5.52; N, 12.71.

6e: white crystals, m. p. 100-102 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.62-7.24 (m, 5H, Ar-H), 6.96 (s, 1H, thiophene-4-H), 4.26-4.16 (m, 1H, NCH), 3.78 (s, 1H, NH), 2.79 (q, *J*=7.2 Hz, 2H, CH₂), 1.33 (t, *J*=7.2 Hz, 3H, CH₃), 1.10 (d, *J*=7.2 Hz, 6H, 2CH₃); IR (cm⁻¹, KBr), 3332 (NH), 1674 (C=O), 1540, 1184; MS (m/z, %), 313 (M⁺, 47), 299 (17), 285 (34), 255 (56), 153 (94), 77 (100); Anal. Calcd. for C₁₇H₁₉N₃OS: C, 65.15; H, 6.11; N, 13.41. Found: C, 65.07; H, 6.38; N, 13.64.

6f: white crystals, m. p. 122-123 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.61~7.23 (m, 5H, Ar-H), 6.97 (s, 1H, thiophene-4-H), 4.02~3.86 (m, 2H, NCH and NH), 2.79 (q, *J*=7.2 Hz, 2H, CH₂), 1.98~0.97 (m, 13H, CH₃ and 5CH₂); IR (cm⁻¹, KBr), 3378 (NH), 1677 (C=O), 1542, 1182; MS (m/z, %), 353 (M⁺, 63), 339 (42), 255 (79), 153 (57), 77 (100); Anal. Calcd. for C₂₀H₂₂N₃OS: C, 67.96; H, 6.56; N, 11.89. Found: C, 67.89; H, 6.78; N, 11.62.

6g: white crystals, m. p. 150-152 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.59~7.25 (m, 5H, Ar-H), 6.95 (s, 1H, thiophene-4-H), 3.90 (s, 1H, NH), 2.80 (q, *J*=7.2 Hz, 2H, CH₂), 1.36~1.32 (m, 12H, CH₃ and 3CH₂); IR (cm⁻¹, KBr), 3431 (NH), 1683 (C=O), 1543, 1238; MS (m/z, %), 327 (M⁺, 79), 270 (100), 256 (73), 153 (72); Anal. Calcd. for C₁₈H₂₁N₃OS: C, 66.03; H, 6.46; N, 12.83. Found: C, 66.24; H, 6.41; N, 12.90.

6h: white crystals, m. p. 159-160 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.60~7.20 (m, 10H, Ar-H), 6.98 (s, 1H, thiophene-4-H), 6.04 (s, 1H, NH), 2.81 (q, *J*=7.2 Hz, 2H, CH₂), 1.34 (t, *J*=7.2 Hz, 3H, CH₃); IR (cm⁻¹, KBr), 3386 (NH), 1676 (C=O), 1542, 1048; MS (m/z, %), 347 (M⁺, 15), 333 (25), 319 (53), 153 (88), 77 (100); Anal. Calcd. for C₂₀H₁₇N₃OS: C, 69.14; H, 4.93; N, 12.09. Found: C, 69.01; H, 4.71; N, 12.31.

6i: white crystals, m. p. 132-133 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.57~7.22 (m, 4H, Ar-H), 6.96 (s, 1H, thiophene-4-H), 3.98 (s, 1H, NH), 3.41~3.30 (m, 2H, NCH₂), 2.79 (q, *J*=7.2 Hz, 2H, CH₂), 1.52~0.83 (m, 8H, CH₃ and CH₂CH₃); IR (cm⁻¹, KBr), 3436 (NH), 1680 (C=O), 1534, 1268; MS (m/z, %), 349 (M⁺, 30), 347 (100), 333 (28), 319 (37), 255 (85), 153 (73); Anal. Calcd. for C₁₇H₁₈ClN₃OS: C, 58.70; H, 5.22; N, 12.08. Found: C, 58.52; H, 5.04; N, 12.10.

6j: white crystals, m. p. 147-148 °C, ¹H NMR (CDCl₃, 400 MHz) δ 7.57~7.22 (m, 4H, Ar-H), 6.95 (s, 1H, thiophene-4-H), 3.99 (s, 1H, NH), 3.40~3.30 (m, 2H, NCH₂), 2.79 (q, *J*=7.2 Hz, 2H, CH₂), 1.47~0.85 (m, 10H, CH₃ and CH₂CH₂CH₃); IR (cm⁻¹, KBr), 3432 (NH), 1683 (C=O), 1535, 1276; MS (m/z, %), 363 (M⁺, 26), 361 (85), 333 (27), 319 (44), 256 (75), 153 (78), 77 (100); Anal. Calcd. for C₁₈H₂₀ClN₃OS: C, 59.74; H, 5.57; N, 11.61. Found: C, 59.78; H, 5.35; N, 11.75.

Acknowledgement

We gratefully acknowledge financial support of this work by the Natural Science Foundation of Hubei Province.

References

1. H. Walter, WO 9911631 (1999). [*Chem. Abstr.* **130**, 237580e (1999)].
2. O. M. Aboulwafa, K. A. Ismail, E. A. Koreish, *Farmaco* **47**, 631 (1992).
3. M. Santagati, M. Modica, A. Santagati, F. Russo, S. Spampinato, *Pharmazie* **51**, 7 (1996).
4. C. J. Shishoo, V. S. Shirasath, I. S. Rathod, V. D. Yande, *Eur. J. Med. Chem.* **35**, 351 (2000).
5. C. J. Shishoo, K. S. Jain, *J. Heterocycl. Chem.*, **30**, 435 (1993).
6. H. Walter, WO 0034286 **2000**. [*Chem. Abstr.* **133**, 30738d (2000)].
7. A. Santagati, M. Santagati, M. Modica, *Heterocycles*, **36**, 1315 (1993).
8. S. Bräse, C. Gil, K. Knepper, V. Zimmermann, *Angew. Chem. Int. Ed.* **44**, 5188 (2005).
9. N. Zanatta, J. M. F. M. Schneider, P. H. Schneider, A. D. Wouters, H. G. Bonacorso, M. A. P. Martins, L. A. Wessjohann, *J. Org. Chem.* **71**, 6996 (2006).
10. M. W. Ding, S. J. Yang, B. Q. Fu, *Heterocycl. Commun.* **10**, 389 (2004).
11. K. Gewald, E. Schinke, H. Bottcher, *Chem. Ber.* **99**, 94 (1966).
12. M. W. Ding, Y. Sun, X. P. Liu, Z. J. Liu, *Chin. J. Chem.* **21**, 577 (2003).

Received on June 28, 2007